Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
South Med J ; 116(5): 383-389, 2023 05.
Article in English | MEDLINE | ID: covidwho-2305656

ABSTRACT

OBJECTIVES: As coronavirus disease 2019 (COVID-19) spread, many states implemented nonpharmaceutical interventions in the absence of effective therapies with varying degrees of success. Our aim was to evaluate restrictions comparing two regions of Georgia and their impact on outcomes as measured by confirmed illness and deaths. METHODS: Using The New York Times COVID-19 incidence data and mandate information from various web sites, we examined trends in cases and deaths using joinpoint analysis at the region and county level before and after the implementation of a mandate. RESULTS: We found that rates of cases and deaths showed the greatest decrease in acceleration after the simultaneous implementation of a statewide shelter-in-place for vulnerable populations combined with social distancing for businesses and limiting gatherings to <10 people. County-level shelters-in-place, business closures, limits on gatherings to <10, and mask mandates showed significant case rate decreases after a county implemented them. School closures had no consistent effect on either outcome. CONCLUSIONS: Our findings indicate that protecting vulnerable populations, implementing social distancing, and mandating masks may be effective countermeasures to containment while mitigating the economic and psychosocial effects of strict shelters-in-place and business closures. In addition, states should consider allowing local municipalities the flexibility to enact nonpharmaceutical interventions that are more or less restrictive than the state-level mandates under some conditions in which the data indicate it is necessary to protect communities from disease or undue economic burden.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Public Health , Georgia/epidemiology , Physical Distancing , Incidence
2.
PLoS Comput Biol ; 18(10): e1010602, 2022 10.
Article in English | MEDLINE | ID: covidwho-2054252

ABSTRACT

We analyze an ensemble of n-sub-epidemic modeling for forecasting the trajectory of epidemics and pandemics. These ensemble modeling approaches, and models that integrate sub-epidemics to capture complex temporal dynamics, have demonstrated powerful forecasting capability. This modeling framework can characterize complex epidemic patterns, including plateaus, epidemic resurgences, and epidemic waves characterized by multiple peaks of different sizes. We systematically assess their calibration and short-term forecasting performance in short-term forecasts for the COVID-19 pandemic in the USA from late April 2020 to late February 2022. We compare their performance with two commonly used statistical ARIMA models. The best fit sub-epidemic model and three ensemble models constructed using the top-ranking sub-epidemic models consistently outperformed the ARIMA models in terms of the weighted interval score (WIS) and the coverage of the 95% prediction interval across the 10-, 20-, and 30-day short-term forecasts. In our 30-day forecasts, the average WIS ranged from 377.6 to 421.3 for the sub-epidemic models, whereas it ranged from 439.29 to 767.05 for the ARIMA models. Across 98 short-term forecasts, the ensemble model incorporating the top four ranking sub-epidemic models (Ensemble(4)) outperformed the (log) ARIMA model 66.3% of the time, and the ARIMA model, 69.4% of the time in 30-day ahead forecasts in terms of the WIS. Ensemble(4) consistently yielded the best performance in terms of the metrics that account for the uncertainty of the predictions. This framework can be readily applied to investigate the spread of epidemics and pandemics beyond COVID-19, as well as other dynamic growth processes found in nature and society that would benefit from short-term predictions.


Subject(s)
COVID-19 , Humans , United States/epidemiology , COVID-19/epidemiology , Pandemics , Forecasting , Models, Statistical , Time
3.
Int J Infect Dis ; 122: 910-920, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2015444

ABSTRACT

OBJECTIVES: Indigenous populations have been disproportionately affected during pandemics. We investigated COVID-19 mortality estimates among indigenous and non-indigenous populations at national and sub-national levels in Mexico. METHODS: We obtained data from the Ministry of Health, Mexico, on 2,173,036 laboratory-confirmed RT-PCR positive COVID-19 cases and 238,803 deaths. We estimated mortality per 1000 person-weeks, mortality rate ratio (RR) among indigenous vs. non-indigenous groups, and hazard ratio (HR) for COVID-19 deaths across four waves of the pandemic, from February 2020 to March 2022. We also assessed differences in the reproduction number (Rt). RESULTS: The mortality rate among indigenous populations of Mexico was 68% higher than that of non-indigenous groups. Out of 32 federal entities, 23 exhibited higher mortality rates among indigenous groups (P < 0.05 in 13 entities). The fourth wave showed the highest RR (2.40). The crude HR was 1.67 (95% CI: 1.62, 1.72), which decreased to 1.08 (95% CI: 1.04, 1.11) after controlling for other covariates. During the intense fourth wave, the Rt among the two groups was comparable. CONCLUSION: Indigenous status is a significant risk factor for COVID-19 mortality in Mexico. Our findings may reflect disparities in non-pharmaceutical (e.g., handwashing and using facemasks), and COVID-19 vaccination interventions among indigenous and non-indigenous populations in Mexico.


Subject(s)
COVID-19 , COVID-19 Vaccines , Humans , Mexico/epidemiology , Pandemics , Risk Factors
4.
PLoS Negl Trop Dis ; 16(3): e0010228, 2022 03.
Article in English | MEDLINE | ID: covidwho-1731580

ABSTRACT

Colombia announced the first case of severe acute respiratory syndrome coronavirus 2 on March 6, 2020. Since then, the country has reported a total of 5,002,387 cases and 127,258 deaths as of October 31, 2021. The aggressive transmission dynamics of SARS-CoV-2 motivate an investigation of COVID-19 at the national and regional levels in Colombia. We utilize the case incidence and mortality data to estimate the transmission potential and generate short-term forecasts of the COVID-19 pandemic to inform the public health policies using previously validated mathematical models. The analysis is augmented by the examination of geographic heterogeneity of COVID-19 at the departmental level along with the investigation of mobility and social media trends. Overall, the national and regional reproduction numbers show sustained disease transmission during the early phase of the pandemic, exhibiting sub-exponential growth dynamics. Whereas the most recent estimates of reproduction number indicate disease containment, with Rt<1.0 as of October 31, 2021. On the forecasting front, the sub-epidemic model performs best at capturing the 30-day ahead COVID-19 trajectory compared to the Richards and generalized logistic growth model. Nevertheless, the spatial variability in the incidence rate patterns across different departments can be grouped into four distinct clusters. As the case incidence surged in July 2020, an increase in mobility patterns was also observed. On the contrary, a spike in the number of tweets indicating the stay-at-home orders was observed in November 2020 when the case incidence had already plateaued, indicating the pandemic fatigue in the country.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Colombia/epidemiology , Forecasting , Humans , SARS-CoV-2
5.
Epidemiologia (Basel) ; 2(4): 639-659, 2021 Dec 16.
Article in English | MEDLINE | ID: covidwho-1580905

ABSTRACT

Nepal was hard hit by a second wave of COVID-19 from April-May 2021. We investigated the transmission dynamics of COVID-19 at the national and provincial levels by using data on laboratory-confirmed RT-PCR positive cases from the official national situation reports. We performed 8 week-to-week sequential forecasts of 10-days and 20-days at national level using three dynamic phenomenological growth models from 5 March 2021-22 May 2021. We also estimated effective and instantaneous reproduction numbers at national and provincial levels using established methods and evaluated the mobility trends using Google's mobility data. Our forecast estimates indicated a declining trend of COVID-19 cases in Nepal as of June 2021. Sub-epidemic and Richards models provided reasonable short-term projections of COVID-19 cases based on standard performance metrics. There was a linear pattern in the trajectory of COVID-19 incidence during the first wave (deceleration of growth parameter (p) = 0.41-0.43, reproduction number (Rt) at 1.1 (95% CI: 1.1, 1.2)), and a sub-exponential growth pattern in the second wave (p = 0.61 (95% CI: 0.58, 0.64)) and Rt at 1.3 (95% CI: 1.3, 1.3)). Across provinces, Rt ranged from 1.2 to 1.5 during the early growth phase of the second wave. The instantaneous Rt fluctuated around 1.0 since January 2021 indicating well sustained transmission. The peak in mobility across different areas coincided with an increasing incidence trend of COVID-19. In conclusion, we found that the sub-epidemic and Richards models yielded reasonable short-terms projections of the COVID-19 trajectory in Nepal, which are useful for healthcare utilization planning.

6.
Int J Infect Dis ; 113: 347-354, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1525812

ABSTRACT

OBJECTIVES: This study examined how socio-demographic, climate and population health characteristics shaped the geospatial variability in excess mortality patterns during the COVID-19 pandemic in Mexico. METHODS: We used Serfling regression models to estimate all-cause excess mortality rates for all 32 Mexican states. The association between socio-demographic, climate, health indicators and excess mortality rates were determined using multiple linear regression analyses. Functional data analysis characterized clusters of states with distinct excess mortality growth rate curves. RESULTS: The overall all-cause excess deaths rate during the COVID-19 pandemic in Mexico until April 10, 2021 was estimated at 39.66 per 10 000 population. The lowest excess death rates were observed in southeastern states including Chiapas (12.72) and Oaxaca (13.42), whereas Mexico City had the highest rate (106.17), followed by Tlaxcala (51.99). We found a positive association of excess mortality rates with aging index, marginalization index, and average household size (P < 0.001) in the final adjusted model (Model R2=77%). We identified four distinct clusters with qualitatively similar excess mortality curves. CONCLUSION: Central states exhibited the highest excess mortality rates, whereas the distribution of aging index, marginalization index, and average household size explained the variability in excess mortality rates across Mexico.


Subject(s)
COVID-19 , Population Health , Demography , Humans , Mexico/epidemiology , Mortality , Pandemics , SARS-CoV-2
7.
PLoS One ; 16(7): e0254826, 2021.
Article in English | MEDLINE | ID: covidwho-1319519

ABSTRACT

Mexico has experienced one of the highest COVID-19 mortality rates in the world. A delayed implementation of social distancing interventions in late March 2020 and a phased reopening of the country in June 2020 has facilitated sustained disease transmission in the region. In this study we systematically generate and compare 30-day ahead forecasts using previously validated growth models based on mortality trends from the Institute for Health Metrics and Evaluation for Mexico and Mexico City in near real-time. Moreover, we estimate reproduction numbers for SARS-CoV-2 based on the methods that rely on genomic data as well as case incidence data. Subsequently, functional data analysis techniques are utilized to analyze the shapes of COVID-19 growth rate curves at the state level to characterize the spatiotemporal transmission patterns of SARS-CoV-2. The early estimates of the reproduction number for Mexico were estimated between Rt ~1.1-1.3 from the genomic and case incidence data. Moreover, the mean estimate of Rt has fluctuated around ~1.0 from late July till end of September 2020. The spatial analysis characterizes the state-level dynamics of COVID-19 into four groups with distinct epidemic trajectories based on epidemic growth rates. Our results show that the sequential mortality forecasts from the GLM and Richards model predict a downward trend in the number of deaths for all thirteen forecast periods for Mexico and Mexico City. However, the sub-epidemic and IHME models perform better predicting a more realistic stable trajectory of COVID-19 mortality trends for the last three forecast periods (09/21-10/21, 09/28-10/27, 09/28-10/27) for Mexico and Mexico City. Our findings indicate that phenomenological models are useful tools for short-term epidemic forecasting albeit forecasts need to be interpreted with caution given the dynamic implementation and lifting of social distancing measures.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Forecasting , Pandemics/statistics & numerical data , Humans , Mexico/epidemiology , Models, Statistical , Socioeconomic Factors
8.
BMC Med Res Methodol ; 21(1): 34, 2021 02 14.
Article in English | MEDLINE | ID: covidwho-1081083

ABSTRACT

BACKGROUND: Ensemble modeling aims to boost the forecasting performance by systematically integrating the predictive accuracy across individual models. Here we introduce a simple-yet-powerful ensemble methodology for forecasting the trajectory of dynamic growth processes that are defined by a system of non-linear differential equations with applications to infectious disease spread. METHODS: We propose and assess the performance of two ensemble modeling schemes with different parametric bootstrapping procedures for trajectory forecasting and uncertainty quantification. Specifically, we conduct sequential probabilistic forecasts to evaluate their forecasting performance using simple dynamical growth models with good track records including the Richards model, the generalized-logistic growth model, and the Gompertz model. We first test and verify the functionality of the method using simulated data from phenomenological models and a mechanistic transmission model. Next, the performance of the method is demonstrated using a diversity of epidemic datasets including scenario outbreak data of the Ebola Forecasting Challenge and real-world epidemic data outbreaks of including influenza, plague, Zika, and COVID-19. RESULTS: We found that the ensemble method that randomly selects a model from the set of individual models for each time point of the trajectory of the epidemic frequently outcompeted the individual models as well as an alternative ensemble method based on the weighted combination of the individual models and yields broader and more realistic uncertainty bounds for the trajectory envelope, achieving not only better coverage rate of the 95% prediction interval but also improved mean interval scores across a diversity of epidemic datasets. CONCLUSION: Our new methodology for ensemble forecasting outcompete component models and an alternative ensemble model that differ in how the variance is evaluated for the generation of the prediction intervals of the forecasts.


Subject(s)
Disease Outbreaks , Forecasting/methods , Models, Statistical , COVID-19/epidemiology , Hemorrhagic Fever, Ebola/epidemiology , Humans , Influenza, Human/epidemiology , SARS-CoV-2 , Zika Virus Infection/epidemiology
9.
PLoS Negl Trop Dis ; 15(1): e0009070, 2021 01.
Article in English | MEDLINE | ID: covidwho-1044358

ABSTRACT

Since the detection of the first case of COVID-19 in Chile on March 3rd, 2020, a total of 513,188 cases, including ~14,302 deaths have been reported in Chile as of November 2nd, 2020. Here, we estimate the reproduction number throughout the epidemic in Chile and study the effectiveness of control interventions especially the effectiveness of lockdowns by conducting short-term forecasts based on the early transmission dynamics of COVID-19. Chile's incidence curve displays early sub-exponential growth dynamics with the deceleration of growth parameter, p, estimated at 0.8 (95% CI: 0.7, 0.8) and the reproduction number, R, estimated at 1.8 (95% CI: 1.6, 1.9). Our findings indicate that the control measures at the start of the epidemic significantly slowed down the spread of the virus. However, the relaxation of restrictions and spread of the virus in low-income neighborhoods in May led to a new surge of infections, followed by the reimposition of lockdowns in Greater Santiago and other municipalities. These measures have decelerated the virus spread with R estimated at ~0.96 (95% CI: 0.95, 0.98) as of November 2nd, 2020. The early sub-exponential growth trend (p ~0.8) of the COVID-19 epidemic transformed into a linear growth trend (p ~0.5) as of July 7th, 2020, after the reimposition of lockdowns. While the broad scale social distancing interventions have slowed the virus spread, the number of new COVID-19 cases continue to accrue, underscoring the need for persistent social distancing and active case detection and isolation efforts to maintain the epidemic under control.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Basic Reproduction Number , COVID-19/diagnosis , COVID-19/epidemiology , Chile/epidemiology , Epidemics/prevention & control , Humans , Incidence , Models, Biological , Physical Distancing
10.
J Clin Med ; 9(2)2020 Feb 22.
Article in English | MEDLINE | ID: covidwho-1506

ABSTRACT

The ongoing COVID-19 epidemic continues to spread within and outside of China, despite several social distancing measures implemented by the Chinese government. Limited epidemiological data are available, and recent changes in case definition and reporting further complicate our understanding of the impact of the epidemic, particularly in the epidemic's epicenter. Here we use previously validated phenomenological models to generate short-term forecasts of cumulative reported cases in Guangdong and Zhejiang, China. Using daily reported cumulative case data up until 13 February 2020 from the National Health Commission of China, we report 5- and 10-day ahead forecasts of cumulative case reports. Specifically, we generate forecasts using a generalized logistic growth model, the Richards growth model, and a sub-epidemic wave model, which have each been previously used to forecast outbreaks due to different infectious diseases. Forecasts from each of the models suggest the outbreaks may be nearing extinction in both Guangdong and Zhejiang; however, the sub-epidemic model predictions also include the potential for further sustained transmission, particularly in Zhejiang. Our 10-day forecasts across the three models predict an additional 65-81 cases (upper bounds: 169-507) in Guangdong and an additional 44-354 (upper bounds: 141-875) cases in Zhejiang by February 23, 2020. In the best-case scenario, current data suggest that transmission in both provinces is slowing down.

SELECTION OF CITATIONS
SEARCH DETAIL